An update on the Saginaw Bay multiple stressors project

5 year grant NOAA Center for Sponsored Coastal Ocean Research

NOAA Great Lakes Environmental Research Laboratory

Also featuring
Wayne State

Purdue

Michigan State University

University of Michigan

University of Akron

Limno-Tech, Inc.

Duke

Eastern MI

Case Western Michigan University

Michigan Department of Natural Resources
Michigan Department of Environmental Quality

Fisheries

Human dimensions

We've already learned a few things...

- Eutrophic
- Shallow: mean depth 5m

data courtesy of Nathan Hawley

http://www.glerl.noaa.gov/res/glcfs/sb/

2009 Sampling

Benthic algae:
Diving and snorkeling survey

Benthic Algae Methods

- Early season surveyed entire inner bay
 - Mixed substrate
 - Found primarilyChara
 - Some macrophytes
 - Little filamentous algae growth, mostly in southwestern region

Benthic Algae Methods

- Focused efforts in southwestern inner bay
- Six transects:
 - Depths: 0.5, 1.0, 2.0,3.0, 4.0 meters
 - Deeper if algae still present
- Surveyed all transects twice (July and August)
- Transect 11 surveyed five times between July and September

2009 Benthic Algae

Biomass by Transect Location

Transect location

Transect 11 Biomass by Depth

Transect 11 Biomass over Time

1978 GLWQA

Hear ye! Hear ye!

By Joint Proclamation Henceforth and foreverafter

Saginaw Bay shall meet a target phosphorus load of:

440 tonnes/year

which probably translates to about 15 ug/L

Total Phosphorus Load vs. Time (with uncertainty)

p (annual load > 440 metric tons / yr)

Total Phosphorus Concentration vs. Time (with uncertainty)

What's the role of the Dreissenid Mussels (zebras and quaggas)?

Saginaw Bay Phosphorus Sedimentation vs. Time (with uncertainty)

2009 Dreissenid Observations

 SCUBA divers observed that benthic algae growing on mussels appeared "healthier" and greener than algal growing on other substrate

In Saginaw Bay:

	Transect 11, 3.0 m August 15, 2009	
	Cladophora Filament Length (cm)	
	On Mussels	On Rock
Mean	3.26	2.04
Std.Dev.	2.03	1.00

In Lake Michigan:

Photo from Bootsma et al. 2006

Data courtesy of Tom Nalepa

2009 Sampling

Data courtesy of Tomas Hook

Spring =May, June Summer=July, August, September Fall=October, November

Microcystis in the Great Lakes

- Colonial harmful algal bloom species (HAB)
- Forms blooms and scums
 - Taste/odor issues
 - Loss of recreational and fishing value to affected waters
 - Hypoxia/anoxia, may lead to mortality in benthic invertebrate community and fish kills

Microcystis

Summary

Some Surprises

Mussel densities down

Mix of benthic algae – seasonal progression?

Periodic vertical stratification

Still some big unknowns

Do mussels supply phosphorus to benthic algae? Link between water levels and muck?

Plans for this year

Ambient Water Quality Survey

Fishery Survey

Buoy and sensor deployment

Current meter deployment

Benthic algae survey

Mussel Survey

Experiments on mussel/phosphorus interactions

What can we do?

Revisit expectations

Broken vs. Fixed – old view
Lake continuously change and adapt
Recognize uncertainty
Improvements may be gradual

Support those who must adapt

Support long-term monitoring